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SYNOPSIS 

This article deals with numerical simulations of draw resonance of polymer fluids by em- 
ploying direct difference methods to solving the governing equations in melt spinning. The 
stability of each difference method was studied by a comparison of the results obtained 
from simulations with the theoretical solutions or values. The numerical simulation confirms 
that the critical draw ratio of draw resonance in an isothermal and uniform tension spinning 
of a Newtonian fluid is between 20 and 21. The cross-sectional area of a spinline in draw 
resonance was found to decrease monotonically from a spinneret toward a take-up bobbin, 
although the taken-up filament shows periodical variation. This study has also illustrated 
the mechanism of draw resonance previously proposed by the author. 0 1993 John Wiley & 
Sons, Inc. 

INTRODUCTION 

Draw resonance of polymer fluids is a characteristic 
instability in melt spinning and film-forming pro- 
cesses and has been the subject of extensive re- 
search.'-17 This instability, being of importance in 
both polymer engineering and polymer science, not 
only reflects the changes in rheological properties 
of a polymer fluid, but also reveals information on 
the molecular structure formation of the fluid in melt 
spinning. Furthermore, it has been pointed out by 
the author that draw resonance in melt spinning 
and the instability of polymers in tensile testing 
share the same mechanism because of the similar- 
ities in their physical and mathematical rnodels.l8 
This finding has permitted a transfer of many con- 
cepts and ideas developed from studies on draw res- 
onance in melt spinning to the tensile testing insta- 
bility, which is a general concern in materials sci- 
ence. 

In a previous paper,17 the author proposed that 
the nonuniformizing draw mode is the necessary 
condition of draw resonance and the mechanism of 
draw resonance lies in the positive feedback feature 
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of a spinline with the nonuniformizing draw mode 
to a turbulence. To further demonstrate and illus- 
trate this mechanism, a profile simulation of the 
spinline in draw resonance is desirable. 

On the other hand, to elucidate the mechanism 
of fiber structure formation in melt spinning, the 
mathematical model of melt spinning has been ex- 
tensively studied. The governing equations of melt 
spinning were established in the 1960s. They consist 
of simultaneous nonlinear partial differential equa- 
tions and cannot be solved analytically except in a 
few special cases. Numerical methods have to be 
employed and their results have played an important 
role in interpreting the mechanism of molecular 
structure formation of polymers in melt 

To obtain the critical draw ratio of draw reso- 
nance of polymer fluids in melt spinning, a linearized 
perturbation approximation of the governing equa- 
tions has been usually adopted. An orthogonal col- 
location method to solving the simultaneous non- 
linear partial differential equations was also found 
to be useful in obtaining the critical draw ratio of 
draw resonance.21 These methods are valid and 
helpful, but cannot be utilized for the simulations 
of spinline profiles and the exact wave form of the 
diameter of taken-up filament in a unsteady state. 

Ishihara and Kase reported a direct difference 
method to solve the governing equations without 
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recourse to the perturbation approximation to ac- 
quire the critical draw ratio of draw r e ~ 0 n a n c e . l ~ ~ ~ ~  
However, the spinline profile in draw resonance was 
not obtained. 

The purpose of this paper is to further demon- 
strate and illustrate the mechanism of draw reso- 
nance by numerical simulations of the spinline pro- 
files in draw resonance, using a Newtonian fluid as 
an example. The stabilities of various difference 
schemes were first compared. The critical draw ratio 
for a Newtonian fluid and the spinline profile in draw 
resonance were then simulated. 

NONDIMENSIONAL GOVERNING 
EQUATIONS AND FINITE DIFFERENCE 
METHODS 

Nondimensional Governing Equations and 
Boundary Conditions 

The governing equations of isothermal melt spinning 
consist of the following constitution equation and 
continuity equation: 

au F 
ax AD 

- 

dA ~ ( A u )  -+-- - 0  
at ax 

where A and u denote, respectively, the cross-sec- 
tional area and velocity of a filament at time t and 
distance n from a spinneret. The symbol F represents 
the spinning tension and is a constant along a spin- 
line but variable with time t by the definition of 
uniform tension spinning. p is the Trouton exten- 
sional viscosity. 

Only the strain rate dependence of the Trouton 
viscosity is considered. For a power law polymer 
fluid, it is written as 

P = Do( 2T1 (3 )  

where Po is a viscosity constant, and the superscript 
p ,  a parameter expressing the strain rate dependence 
of the Trouton viscosity. When p tends to unity, a 
Newtonian fluid is obtained. In this study, only 
Newtonian fluids will be addressed. 

These equations can be expressed in terms of 
nondimensional variables in order to increase gen- 

erality and reduce the arithmetical procedures in- 
volved in a simulation: 

( 4 )  

The continuity equation eq. (5-1) has another 
form, which is completely equivalent to eq. (5-1) for 
an analytical solution: 

ax ax 
- - S * - + [ = O  aT ay 

where and $ denote, respectively, the nondimen- 
sional cross-sectional area and velocity of a filament 
at nondimensional distance { from a spinneret and 
nondimensional time, T. The symbol [ is the non- 
dimensional spinning tension. 

These nondimensional parameters are defined as 
follows: 

y = x / L  

T = tVo/L nondimensional time 
X = A/Ao nondimensional cross-sectional 

$ = v/vo nondimensional velocity of a fil- 

[ = [ F /  ( ] nondimensional spinning tension 

where, L ,  Ao,  and Vo are the distance from a spin- 
neret to a take-up bobbin, the cross-sectional area, 
and the extrusion rate a t  the spinneret, respectively. 

The nondimensional boundary and initial con- 
ditions can be written as 

nondimensional spinline distance 
from a spinneret 

area of a filament 

ament 

x (LIVO) 

$ = 1, where r = 0 ( 6 )  

$ = $w, where 1 = 1 ( 7 )  

and where $m is the draw ratio of a spinning. 
The nondimensional distance, <, may be trans- 

formed to the nondimensional resident time, {*, of 
a polymer fluid traveling from a spinneret to this 
distance that is defined in eq. (8) : 

The nondimensional variables y and {* are 
equivalent in a steady state since they have a one- 
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to-one corresponding relationship. In an unsteady 
state, however, it is difficult to determine the 
boundary condition corresponding to < = 1 by using 
the nondimensional resident time, <*, because the 
resident time of a polymer fluid from the spinneret 
to the take-up point varies. The transformation of 
the variable {to the variable <* increases difficulties 
in arithmetic involved in a simulation. In some pa- 
pers, the boundary condition for an unsteady state 
has been set 

where $o is the nondimensional velocity of a filament 
in a steady state. 

It should be pointed out that this treatment is 
applicable only in a steady state of spinning and 
could result in a potential systematic error in the 
numerical simulations of a unsteady state. In this 
present study, the nondimensional variables of time 
T and distance { are employed as the independent 
variables of the governing equations. 

Difference Equations of the Governing Equations 

The convergence and stability of a difference method 
are very important when the method is applied to 
solving a nonlinear partial differential equation. On 
the other hand, a definite theory on the convergence 
and stability has not been established. It is a com- 
mon practice that one investigates whether a dif- 
ference method is convergent and stable or not by 
comparing the solution derived from the difference 
method with a theoretical or physical solution, if 
this solution is obtainable. 

Figure 1 shows two various difference schemes 
applicable to solving the nondimensional governing 
equations with the above-mentioned boundary and 
initial conditions. From here on, the schemes in 
Figure 1 ( A )  for eqs. ( 4 )  and (5 -1 ) ,  (4), and (5-2)  
are called Method A and Method B, respectively, 
while the scheme of Figure 1 (B)  for eqs. ( 4 )  and 
(5-1)  is termed Method C. The comparison of 
Methods A and C shows the effect of the difference 
schemes on the stability of a numerical solution, 
and the comparison of Methods A and B should in- 
dicate the effect of partial differential equation 
forms, i.e., eqs. (5-1) and ( 5 - 2 ) ,  on the stability, 
although they are completely equivalent in an an- 
alytical solution. 

The difference equations of Methods A, B, and 
C for a Newtonian fluid are written as 

A :  Spinneret 

5 

Take-up 
0 1 2  . . .  j-1j 

6: Spinneret 

5 i b  

Take-up 

Figure 1 Difference schemes employed in this study. 

Method A: 

Method B: 

A< 
$. . = $. . + r ; .  .-  

X i , j  
1+1.1 1.1 1 3 1  

and Method C: 

A< 
. = $. . + r ; .  . - 

hi,j 
$. l + l J  1 , l  1 , l  

where w = A r / A {  represents the mesh ratio of a 
difference scheme. 

RESULTS AND DISCUSSION 

Simulation of Isothermal Spinning under 
Uniform Stress 

With isothermal melt spinning under uniform stress, 
the ratio of the spinning tension and the cross-sec- 
tional area of a filament is a constant along the 
spinline but may vary with time by the definition. 
In such spinning for a power law polymer fluid in- 
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cluding a Newtonian fluid, the governing equations 
have an analytical solution, given that the spinning 
conditions are maintained constant 17: 

This solution indicates that a constant diameter 
of filament will be observed whenever the spinning 
conditions are maintained unvariable. This analyt- 
ical solution can be used for the comparison with 
numerical solutions. The stability of a difference 
scheme can then be discussed based on this com- 
parison. 

The numerical simulation for such a spinning was 
performed by assuming that the take-up velocity has 
a 10% step increment at nondimensional time 0; 
then, the new take-up velocity is kept unvariable. 
The mathematical expression for this step increment 
of the take-up velocity can be written 

The other initial and boundary conditions are 

To facilitate calculation forwardly from a spin- 
neret to a take-up point, the nondimensional spin- 
ning tension, [ (in this section, the nondimensional 
spinning stress, i.e., [ / A ) ,  has to be given a tentative 
value. By comparing the calculated take-up veloc- 
ity, $[l, r( j ) ]  , with the real take-up velocity, l.l$W, 
one reiterates the revision of the nondimensional 
spinning tension by employing the following New- 
tonian interpolation method until the calculated 
take-up velocity becomes satisfactory: 

where t; denotes the nondimensional spinning ten- 
sion at  the nondimensional time r = j ,  and t;') and 
[ j 2 '  are, respectively, the first and second tentative 
values of the nondimensional spinning tension at 
time j .  e ( k )  represents the difference between the 
calculated and real take-up velocities. The inter- 
polation was iterated until the difference became 
less than 1/1,000,000 of the real take-up velocity. 
The above-mentioned initial and boundary condi- 
tions, as well as the Newtonian interpolation 
method, are also adopted in the following two sec- 
tions. 

Figure 2 shows the simulated responses of the 
nondimensional cross-sectional area of a taken-up 
filament using Method A to the 10% step increment 
of the take-up velocity. It is observed that the nu- 
merical solutions converge to the analytical solutions 
in all the draw ratios employed, except in the region 

L I 
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c 
0 .- 
u) 8 0 1 *  
c 0 100 200 a, 
E .- a 

Time ( j 1 

t 
200 

80' ' 
0 100 

Non-dimen. T i  me ( j ) 

Figure 2 The responses of the cross-sectional area of 
taken-up filament to the step increment of the take-up 
velocity simulated using Method A for an isothermal 
spinning of a power law polymer fluid under uniform 
stress. 
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so 

close to the discontinuous point of the step incre- 
ment. The nondimensional cross-sectional area was 
rescaled in this figure so that 100% represented the 
cross-sectional area in the steady state correspond- 
ing to the new take-up velocity after the 10% step 
increment. 

The numerical solutions using Method B are 
shown in Figure 3. A draw ratio of 100 was adopted 
in these simulations. It is clear from the figure that 
the numerical solutions diverge from the analytical 
solutions, suggesting that Method B has a poor sta- 
bility although the error becomes smaller as the 
mesh is divided finely. A significant error could be 
still observed even in the case of A7 = 0.005 and A{ 
= 0.0025. Therefore, this method is not favored. 

The responses of the nondimensional cross-sec- 
tional area of taken-up filament to the 10% step 

Analytical 

* , I 

Fw = 100 

CI 

s 100 

*0° t 
A<= 0.0025 

Analytical 
'-4 

AT= 0.0005 

c3 z a 
I 

Numerical 
I 

0 -  

L 
0 .- 

Numerical 

A~=0.001 
A(=0.005 

J 

1000 2000 .- O ' O  n 
I 
C 
0 
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Analytical A<=O.Ol 

Ar  = 0 .  01  AC = 0 - 01  

Fw = 1 0  

I2O t 
I Analytical 

t s o l ,  I 
0 100 200 

Fw = 10000 1 2 0  - 

Numerical 

Analytical 

d 100 200 

Non- Dimensional Time (j ) 

Figure 4 The responses of the cross-sectional area of 
taken-up filament to the step increment of the take-up 
velocity simulated using Method C for an isothermal 
spinning of a power law polymer fluid under uniform 
stress. 

increment of the taken-up velocity, simulated using 
Method C, are displayed in Figure 4. The mesh 
adopted in the simulation was Ar = A{ = 0.01. The 
numerical solutions are found not only to converge 
to the analytical solutions in all the draw ratios em- 
ployed, but also to have a faster convergence rate 
than that of Method A, indicating that Method C 
could be the best of the three methods. 

The Critical Draw Ratio of Isothermal and 
Uniform Tension Spinning for a Newtonian Fluid 

Draw resonance occurs in isothermal and uniform 
tension spinning of a Newtonian fluid as the draw 
ratio exceeds the critical draw ratio 2O.21€Lz3 In such 
a spinning, no analytical solution could be obtained. 
Figure 5 shows the responses of the cross-sectional 
area of the taken-up filament to the 10% step in- 
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0 

9 

0 
0 

= 2 5  W df = 0 .  005 

dC = 0 . 005  

1 

crement of the take-up velocity, computed using 
Method A. It is observed in this figure that the cross- 
sectional area approaches a steady value in spite of 
the draw ratio of 25. This contradiction could result 
from the stability of the difference equations in such 
a spinning. The responses of the cross-sectional area 

simulated using Method B are represented in Figure 
6. The cross-sectional area of the taken-up filament 
is found to approach a steady value after a short 
period of transient time diverging from 100%. This 
value of 100% should be the analytical solution from 
a physical viewpoint, suggesting that the stability 
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Figure 6 The responses of the cross-sectional area of taken-up filament to the step 
increment of the take-up velocity, simulated using Method B for an isothermal and uniform 
tension spinning of a Newtonian fluid ( a )  AT = A{ = 0.01; (b )  AT = A{ = 0.005. 

of Method B in such a spinning is also poor. Both 
Methods A and B show improvements in approach- 
ing the theoretical values as the meshes are finely 
divided. 

Displayed in Figure 7 are the responses of the 
cross-sectional area of the taken-up filament to the 

10% step increment of the take-up velocity, simu- 
lated using Method C. The cross-sectional area ap- 
proaches a steady value in the case of the draw ratio 
of 20, whereas a sustained variation with a standing 
period and amplitude is maintained as the draw ratio 
is increased to 21, suggesting that the critical draw 
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Figure 7 The responses of the cross-sectional area of taken-up filament to the step 
increment of the take-up velocity, simulated using Method C for an isothermal and uniform 
tension spinning of a Newtonian fluid. 

ratio of draw resonance in such a spinning lies be- 
tween 20 and 21. This value is consistent with the 
reported theoretical value of 20.218.23 The critical 
draw ratio was identified to be only between 7.4 and 
20.1 by using a direct difference method to solve the 
governing equations in such a spinning in the lit- 
e r a t ~ r e . ~ ~ , ~ ~  This present simulation, therefore, could 
be regarded as a reliable numerical method with high 
stability. 

Spinline Profiles in Draw Resonance 

The spinline profiles in draw resonance were sim- 
ulated by employing Method C and assuming an 
isothermal and uniform tension spinning of a New- 
tonian fluid at the draw ratio of 50. Figure 8 illus- 
trates the response of the nondimensional cross- 
sectional area of taken-up filament to the 10% step 
increment of the take-up velocity. After a transient 

period, the cross-sectional area of taken-up filament 
approaches a sustained limit cycle oscillating with 
a standing period and amplitude. Since the draw 
ratio of 50 is much higher than the critical draw 
ratio of 20.218, the wave form is found to be very 
sharp. 

The spinline profiles of one cycle corresponding 
to the nondimensional time 363-428 in Figure 8 are 
presented in Figure 9. It is clear from this figure that 
the nondimensional cross-sectional area of the 
spinlines decreases monotonically from the spin- 
neret to the take-up bobbin in spite of the cross- 
sectional area of taken-up filament varying with a 
standing period and amplitude as draw resonance 
occurs. 

Figure 9 also visualizes how a spinning fluid is 
attenuated along a spinline in draw resonance. The 
two small volumes of the spinning fluid in Figure 9, 
represented by A and B, descend at almost the same 
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Figure 8 The responses of the cross-sectional area of taken-up filament to the step 
increment of the take-up velocity, simulated using Method C for an  isothermal and uniform 
tension spinning of a Newtonian fluid; draw ratio = 50. 
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Figure 9 
mensional time 363-426. 

Spinline profiles in draw resonance. One cycle corresponding to the nondi- 
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velocity as the extruding velocity from the nondi- 
mensional time 363 to 426. Little attenuation of the 
small volumes could be observed. Attenuation is 
found to concentrate at the thinner parts of the 
spinline. Only in the final moment were the small 
volumes accelerated to meet the take-up velocity, 
resulting in the peak at the nondimensional time 
428 in Figure 8. This simulation, therefore, dem- 
onstrated and illustrated directly the mechanism of 
draw resonance proposed by the author.17 It should 
be mentioned that this feature of draw resonance 
observed in Figure 9 is believed not to be a specific 
feature for a Newtonian fluid in such a spinning, 
but to be the common feature of draw resonance for 
polymer fluids. 

CONCLUSION 

It has been found that both the form of the governing 
equations and the finite difference schemes are rel- 
evant to the stability of a numerical simulation of 
melt spinning. This study suggests that the govern- 
ing equations, eqs. ( 4 )  and (5-1), and the forward 
difference scheme A have the highest stability in the 
simulations of draw resonance. The critical draw 
ratio of draw resonance for a Newtonian fluid in an 
isothermal and uniform tension spinning is con- 
firmed to lie between 20 and 21 by using the direct 
difference method. The cross-sectional area of a 
spinline in draw resonance was found to decrease 
monotonically from a spinneret toward a take-up 
bobbin in spite of the taken-up filament showing 
variation with a standing period and amplitude. This 
simulation is believed to have demonstrated and il- 
lustrated directly the mechanism of draw resonance 
proposed by the author. 

APPENDIX 

The numerical computations were performed by using an 
M-280H supercomputer located in the Center of Infor- 
mation and Computation, the Tokyo Institute of Tech- 

nology. Each computation required around 30 s of CPU 
time. 
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